Edit
Contact us
Salocin Group Leaders in data and AI-enabled connected customer experiences
Edit Engineers of connected customer experiences
Join the Dots Independent, data-led media thinking for sustainable growth
Wood for Trees Optimisers of future fundraising performance
  • Home
  • Our services
    • Cloud solutions
    • Data science
    • Modern Data Platform
    • Privacy and AI compliance
  • Our partners
    • Apteco
    • Creatio
    • Microsoft
    • Salesforce
  • Our insights
    • Blog
    • Case studies
    • Reports
    • Webinars
    • Whitepapers
  • About Salocin Group
    • Careers
  • Contact Salocin Group
  • Home
  • Who we are
    • B Corp
    • Careers
  • Our work
  • What we do
    • Intelligent data
    • Marketing technology
    • Transformational CRM
    • Our technology partners
    • Privacy review
  • Our insights
    • Blog
    • Case studies
    • Reports
    • Webinars
    • Whitepapers
  • Contact Edit
  • Home
  • Broadcast media
  • Digital media
  • Print
    • Direct mail
  • Data
    • Our work with Herdify
    • EPiC
  • Media agency
  • Our insights
    • Blog
    • Case studies
    • Reports
    • Webinars
    • Whitepapers
  • About Join the Dots
    • Careers
  • Contact Join the Dots
  • Home
  • Services
    • Actionable insight
    • Data discovery
    • Data engineering
    • Data hygiene
    • Privacy review
  • Products
    • InsightHub
    • Apteco
    • Microsoft
    • Data management
    • Consent and preference management
  • Our insights
    • Blog
    • Case studies
    • Reports
    • Webinars
    • Whitepapers
  • About Wood for Trees
    • Operating principles
    • Careers
  • Contact Wood for Trees
Blog

Key statistical definitions for AB Testing

By Edit | 6 Mar 2018

AB Split Testing investigates the impact of changing typically one aspect of your site, to discover how much uplift implementing such a change you could have on your conversions or click-throughs. There’s one word in that previous sentence that has more importance than you initially think, and that is “could”. There’s no guarantee that you will ever see that uplift.

To be able to measure how likely a potential uplift is, a statistical technique that we can use is hypothesis testing. But as always with statistics, there is terminology that needs to be understood to be able to properly understand and action those results.

Hypothesis testing

This is a statistical technique to detect whether there is no difference between two samples of data. In an AB Test, we are interested in whether our variation is better than the control. In other words, will the conversion rate be better for the variation than the control. The most difficult concept to grasp here is that a hypothesis only detects a lack of difference, rather than whether there is a difference.

Significance

This is basically the threshold at which we would consider there to be a significant difference, and is typically set at 0.1, 0.05 or 0.01. This significance level determines how much weight is given to the extreme instances of a test. If you choose a smaller significance level, there would be a much smaller margin for your test to be significant with an extreme result.

Confidence

Confidence is more commonly associated with confidence intervals and is isolated to your test, however it is directly related to significance. If you want to be 90% confident, then you would set your significance at a 0.1 level. Intuitively, this makes sense since if you want to be more confident that you have a significant test, then you want a smaller margin for extreme results. So, the confidence and significance level scale appropriately.

P-values

As we said earlier (and even used before), the significance level is a threshold and it’s the p-value that is the measuring stick here. Statistically, the p-value is the probability that the test is part of the null distribution. In normal AB Testing speak, this is the probability that there is not a difference between the variant and the control, and that the difference you’ve found is completely by chance.

Each one of these plays a part in a basic AB Test, from constructing your hypothesis, to conducting your test and analysing the results. It’s important to understand that with a hypothesis test, the test will never tell you whether there is a difference, only evidence to suggest there is no difference. And even then, you control whether you determine a test is a significant test or not.

Summary:

  • Hypothesis tests are what you are testing
  • Confidence and Significance are not the same but linked terms
  • P-value is the probability that you achieved an extreme result and there is no difference between variants

Share this

  • Email
  • WhatsApp
  • LinkedIn
  • Facebook
  • X (Twitter)

More insights

AI isn’t going to take your job (unless you really want it to) 
Blog

AI isn’t going to take your job (unless you really want it to) 

By Edit | 18 Jun 2024
Customer relationship marketing: How generative AI is revolutionising engagement  
Blog

Customer relationship marketing: How generative AI is revolutionising engagement  

By Edit | 4 Apr 2024
Personalisation as a process
Blog

Personalisation as a process

By Edit | 8 Mar 2024
  • Privacy policy
  • Cookie policy
  • Ts&Cs
  • Report a concern

© 2025 Edit, part of Salocin Group Ltd. All rights reserved. Company no.: 0362​4881. VAT no.: 4208​34911.

Salocin Group Certified B Corporation | Cyber Essentials Certified | British Assessment Bureau, ISO 27001 Information Security Management
Salocin Group
Your cookie preferences

We use cookies to ensure this website functions properly, to analyse website traffic and for marketing purposes.

Functional Always active
The technical storage or access is strictly necessary for the legitimate purpose of enabling the use of a specific service explicitly requested by the subscriber or user, or for the sole purpose of carrying out the transmission of a communication over an electronic communications network.
Preferences
The technical storage or access is necessary for the legitimate purpose of storing preferences that are not requested by the subscriber or user.
Statistics
The technical storage or access that is used exclusively for statistical purposes. The technical storage or access that is used exclusively for anonymous statistical purposes. Without a subpoena, voluntary compliance on the part of your Internet Service Provider, or additional records from a third party, information stored or retrieved for this purpose alone cannot usually be used to identify you.
Marketing
The technical storage or access is required to create user profiles to send advertising, or to track the user on a website or across several websites for similar marketing purposes.
Manage options Manage services Manage {vendor_count} vendors Read more about these purposes
View preferences
{title} {title} {title}