Edit
Contact us
Salocin Group Leaders in data and AI-enabled connected customer experiences
Edit Engineers of connected customer experiences
Join the Dots Independent, data-led media thinking for sustainable growth
Wood for Trees Optimisers of future fundraising performance
  • Home
  • Our services
    • Cloud solutions
    • Data science
    • Modern Data Platform
    • Privacy and AI compliance
  • Our partners
    • Apteco
    • Creatio
    • Microsoft
    • Salesforce
  • Our insights
    • Blog
    • Case studies
    • Reports
    • Webinars
    • Whitepapers
  • About Salocin Group
    • Careers
  • Contact Salocin Group
  • Home
  • Who we are
    • B Corp
    • Careers
  • Our work
  • What we do
    • Intelligent data
    • Marketing technology
    • Transformational CRM
    • Our technology partners
    • Privacy review
  • Our insights
    • Blog
    • Case studies
    • Reports
    • Webinars
    • Whitepapers
  • Contact Edit
  • Home
  • Broadcast media
  • Digital media
  • Print
    • Direct mail
  • Data
    • Our work with Herdify
    • EPiC
  • Media agency
  • Our insights
    • Blog
    • Case studies
    • Reports
    • Webinars
    • Whitepapers
  • About Join the Dots
    • Careers
  • Contact Join the Dots
  • Home
  • Services
    • Actionable insight
    • Data discovery
    • Data engineering
    • Data hygiene
    • Privacy review
  • Products
    • InsightHub
    • Apteco
    • Microsoft
    • Data management
    • Consent and preference management
  • Our insights
    • Blog
    • Case studies
    • Reports
    • Webinars
    • Whitepapers
  • About Wood for Trees
    • Operating principles
    • Careers
  • Contact Wood for Trees
Blog

Keyword Rankings and Forecasting in SEO using Shiny

By Edit | 28 Jun 2018

Previously, we’ve seen how R can be used to retrieve data from APIs such as Google Analytics. Often with data, you’ll conduct the same type of analysis repeatedly, using the same kind of code, for various projects. To make life easier, wouldn’t you want to build a front-end, so you can just plug in your numbers and get your analysis out? With something called Shiny, you can!

What is Shiny?

Shiny is an R package built by Rstudio. With a Shiny application there are two parts, the backend and the front-end. The backend is the Server part of the code. This is the backbone of your work and where your normal repetitive analysis would take place. The front-end section of the code is the UI file of your code. This is where you can build the visuals to be able to run those repetitive analyses. However, it is possible to combine these parts and build an application in one single file, or just build the UI into your backend.

Why should you use Shiny?

Consider this scenario, you’ve built some code that lets you regularly interact with APIs. But you always change one aspect of the code so it’s specific to the project you are working on, such as changing the Google Analytics View ID to get the correct view. With Shiny, you could build an application that calls the API automatically and get the View ID that you need, and then retrieve the data required with the press of a button. A more explicit example is using AWR. You can access their API to get your list of projects and ranking dates, then display them in your UI. This way, you can load up your application, choose the project and date that you want, and get the keyword rankings in the format you need.If that doesn’t convince you, how about SEO forecasting? You could build a front-end onto your forecasting code so that when it is required, you can just plug in your data, press Go, and speed up your analysis. Or even better, building the application so one of your colleagues can do the forecasting for themselves using the same methodology that you use. To go a step further, put your application on a server so it can easily be accessed without them having to use R.The first advantage of this is that it makes the whole process more efficient. You don’t have to open your code up and edit it. You’ve done it before, why do it again? A second advantage is that it brings reproducible and robust analyses to people who don’t need to build or even understand R code to be able to conduct an analysis in R. Third, you now have a process and methodology in place that can easily be referred to.

There’s so many possibilities with R that make it so powerful. We’ve previously seen that we can integrate R into our data extraction process using APIs, so that we can combine data extraction with data analysis. What Shiny brings to the table is that we can bring the data extraction and analysis process to people who don’t know statistics and data. This also allows the process of making an actionable decision, whether it is by someone who knows R or not, much more efficient.

Summary:

  • Use Shiny for extracting keyword rankings
  • Use Shiny for SEO forecasting
  • Use Shiny to performing data analysis
  • Use Shiny to do anything!

Share this

  • Email
  • WhatsApp
  • LinkedIn
  • Facebook
  • X (Twitter)

More insights

AI isn’t going to take your job (unless you really want it to) 
Blog

AI isn’t going to take your job (unless you really want it to) 

By Edit | 18 Jun 2024
Customer relationship marketing: How generative AI is revolutionising engagement  
Blog

Customer relationship marketing: How generative AI is revolutionising engagement  

By Edit | 4 Apr 2024
Personalisation as a process
Blog

Personalisation as a process

By Edit | 8 Mar 2024
  • Privacy policy
  • Cookie policy
  • Ts&Cs
  • Report a concern

© 2025 Edit, part of Salocin Group Ltd. All rights reserved. Company no.: 0362​4881. VAT no.: 4208​34911.

Salocin Group Certified B Corporation | Cyber Essentials Certified | British Assessment Bureau, ISO 27001 Information Security Management
Salocin Group
Your cookie preferences

We use cookies to ensure this website functions properly, to analyse website traffic and for marketing purposes.

Functional Always active
The technical storage or access is strictly necessary for the legitimate purpose of enabling the use of a specific service explicitly requested by the subscriber or user, or for the sole purpose of carrying out the transmission of a communication over an electronic communications network.
Preferences
The technical storage or access is necessary for the legitimate purpose of storing preferences that are not requested by the subscriber or user.
Statistics
The technical storage or access that is used exclusively for statistical purposes. The technical storage or access that is used exclusively for anonymous statistical purposes. Without a subpoena, voluntary compliance on the part of your Internet Service Provider, or additional records from a third party, information stored or retrieved for this purpose alone cannot usually be used to identify you.
Marketing
The technical storage or access is required to create user profiles to send advertising, or to track the user on a website or across several websites for similar marketing purposes.
Manage options Manage services Manage {vendor_count} vendors Read more about these purposes
View preferences
{title} {title} {title}